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A diffraction theory is developed for diffuse scattering from disordered binary alloys with short-range 
order. It is based on a model of ordered microdomains embedded in a disordered matrix and inter- 
ference effects between the domains are considered. There is a possibility that the fine structures of 
diffuse scattering as observed in the cases of Cu3Au, CuAu and Cu3Pd alloys result from the introduc- 
tion of interdomain correlations. From experimental diffuse intensity values one can calculate the 
statistical distribution of microdomains in antiphase with one another. 

Introduction 

In order to describe atomic configuration of disordered 
binary alloys with short-range order (SRO), the 
Warren parameters (a~'s), which give exact correla- 
tions between the two kinds of atoms, are generally 
used (Cowley, 1950). They are defined by 

at= 1-p~8/m8 (or = 1--p~A/mA), 
where p~8 is the probability of finding a B atom at the 
extremity of the vector R~ with its origin at an A atom, 
and p~A is defined in a similar way; mA and mB are the 
fractions of A and B atoms in the alloy. A set of SRO 
parameters can be uniquely obtained from the Fourier 
transformation of diffuse scattering and this has been 
considered asvery important and convenient for treating 
the problems of binary alloys in diffraction theory as 
well as in statistical theory. 

However, correlation functions such as a set of 0q 
parameters do not offer, by themselves, any further 
information as to the real atomic arrangements in an 
alloy. Therefore, some physical aspects must be 
considered if it is required to find the microstructures 
or the local atomic arrangements in disordered alloys 
with SRO. Up to the present, various attempts to find 
such atomic configurations have been made by dif- 
fractionists using various assumptions. For the Cu3Au 
alloy, Batterman (1956) and Moss (1966) proposed a 
model similar to Wilson's (1962) treatment, in which a 
disordered state is approached by introducing 'bad' 
mistakes (or high-energy antiphase boundaries) in ad- 
dition to 'good' mistakes (or low-energy antiphase 
boundaries). Recently, a model was proposed by 
Greenholz & Kidron (1970) which represented a struc- 
ture of microdomains embedded randomly in a dis- 
ordered matrix. A computer simulation by Gehlen & 
Cohen (1965) supported the existence of minute ordered 
domains in a nearly random matrix. This structure 
may be considered as a geometrically possible one 
when the a, parameters in the region of small inter- 
atomic distance are given. 

An electron diffraction pattern from the Cu3Au 
alloy was obtained by Hashimoto & Ogawa (1970) in 
which the diffuse scattering was characterized by four 
diffuse streaks running along the (110) directions as 
shown in Fig. l(a) and schematically illustrated in 
Fig. l(b). The pattern is considered to be the most 
highly resolved which has ever been observed from the 
disordered Cu3Au alloy. In the disordered Cu3Pd, a 
diffraction pattern similar to that from Cu3Au was 
observed by Watanabe (1959), and recently by Oshima 
& Watanabe (1973), as shown in Fig. 2. No structure 
analysis has been done for diffuse scattering with this 
type of fine structure. 

In the present paper, a diffraction theory is de- 
veloped for such SRO binary alloys, based on a model 
of ordered microdomains embedded in a perfectly dis- 
ordered matrix, as schematically illustrated in Fig. 3. 
The fine structure of diffuse scattering around the 
superlattice-reflexion positions is obtained by the 
introduction into the model of correlations between 
microdomains out of phase with one another. This 
model may well embody the microstructure of dis- 
ordered alloys with SRO. The model of Greenholz & 
Kidron (1970) neglects the interference effect between 
minute ordered regions and therefore cannot explain 
the fine structure of diffuse scattering. Watanabe (1959) 
suggested that in Cu3Pd, which has a long-period 
structure below the order-disorder transition temper- 
ature, short chains of one-dimensional antiphase 
domains with the same period of step shifts as in the 
ordered state may remain randomly in a disordered 
state. Moss (1966) also mentioned that it was reason- 
able to assume a very high density of small highly 
ordered regions in antiphase to one another existing in 
a nearly random matrix for the disordered Cu3Au 
alloy. The present theory treats such a minute anti- 
phase domain model more strictly and quantitatively. 
Further, the present model, which will be called the 
correlative microdomain model (CMDM), is shown to 
be plausible in the following brief consideration. Ac- 
cording to Moss (1969), the streaks lie at the distance 
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Fig 1. (a) Diffraction pattern taken from Cu3Au quenched from 450°C. (b) Illustration of (a). Gll0 is the superlattice reflexion 
position of the L12 Cu3Au ordered structure, q shows the position of strong diffuse intensity, q0=q-GH0.  

Fig. 2. Diffraction pattern taken from Cu~Pd quenched from 
500°C. (From Oshima & Watanabe, 1973). 

[To face p. 792 
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q = 2kv (kv is the Fermi wave vector on the flat part of 
the Fermi surface) from the fundamental reciprocal- 
lattice points, and the existence of them means that 
the Fermi surface produces a relatively long-range 
oscillatory interatomic interaction with the wave vector 
q=2k~ in real space. In the C u 3 A u  alloy, the vector 
q =  2kv lies close to the superlattice position Gn0, and, 
therefore, the oscillation agrees approximately with 
the periodicity of the L12 ordered structure and 
stabilizes this structure within minute regions in the 
disordered state. A wave, whose wave vector is the 
difference q~ [shown in Fig. l(b)] between q=2kv  and 
Gn0 as shown in the lowest part of Fig. 4, is considered 
to bring an antiphase relation to any pair of micro- 
domains with a definite interval. 

Theory of diffraction 

The amplitude diffracted from a binary alloy crystal 
can be written as 
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Fig. 3. Microdomain structure of antiphase domains embed- 
ded in a disordered matrix with any correlation between 
them. The shaded region indicates the disordered region. 
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Fig. 4. Schematic illustration of the waves with wave vectors 
G n 0 ,  q = 2kv and qo, respectively, which are projected on one 
direction. 

A(q)= ~ { f + f ( R 3 )  exp (-2zciq.  R~), (1) 
i 

f =  mafA + m u f s ,  

where fA and fa are the atomic scattering factors of A 
and B atoms, respectively, and f (R3  represents a devia- 
tion of the atomic scattering factor of an atom on an i 
site from f, the average scattering factor, and equals 
+ mu(fA--fa) or - mA(fA--fB ) according to whether 
the i site is occupied by an A atom or a B atom. q is the 
scattering vector whose modulus is 2(sin 0)/2, 20 being 
the scattering angle and 2 the wavelength. R~ is a vector 
from the origin to the i site. 

The intensity of the diffracted beam is written as 

I(R) = A (R)A *(q) 

= ]fl 2 ~ ~ exp [ -  2z~iq. (R~- R,)] 
i J 

+ ~ ~ { f (R3f*  +ff*(Rj)}  exp [-2z~iq. (R~-Rj)] 
l J 

+ ~ ~ , f (R , ) f* (R j )  exp [-2z~iq. (R~-Rj)] .  (2) 
j 

In equation (2) the first term gives the fundamental 
reflexions, and the second term is equal to zero because 
~f(R~) = {mA(+ rnB) + roB(-- mA))(fA--fB)-- 0. The third 

term is the diffuse scattering due to SRO, and will 
appear throughout the present treatment. 

It is assumed that ordered microdomains are em- 
bedded in a disordered matrix without any SRO. In 
this case the third term in equation (2), denoted by 
Isro(q), can be expressed as 

Isro(q) = ~ ~f (Rr ) f* (R, , )  exp [-2z~iq. (R,-Rr,)]  
r r t 

+ ~ ~ f ( R , ) f * ( R j )  exp [-2z~iq. ( R r -  Rj)] 
r j 

+ ~ ~f(R~)f*(R, , )  exp [-2z~iq. (R~-R~,)] 
i r t 

+ ~. ~ f ( R , ) f * ( R j )  exp [ -  2giq. ( R , -  Rj)], (3) 
l J 

where the subscripts r and r '  denote the sites in the 
disordered matrix, and i and j the sites in the ordered 
microdomains. The first term in equation (3) becomes 
the Laue monotonic scattering that results only from 
the disordered volume of the crystal and is indicated 
as ILM. That is to say, 

ILM = nrmAmB[f A -- f B[ 2, (4) 

where n, is the number of atoms in the disordered 
volume. Only the terms for r =  r '  remain in the double 
sum of the first term. The second and third terms in 
equation (3) vanish, because there is no correlation 
between f(Rr) and f(Rj),  or f ( R 3  and f(R~,). The last 
term expresses the diffraction effect from ordered 
microdomains on the diffuse scattering, and can be 
rewritten as 

IMp(q) = ~ ~ f ' (R3f '*(Rj)  
j 

× exp [ - 2 ~ i q .  (R~- R j)], (5) 
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where the summations are over the whole crystal volume 
and f'(R~) and f ' (R j )  are defined as 

f ' (R,)  [or f '(Rj)] 
{ f(R,)  [or f(R:)] in the ordered microdomains 

= 0 in the disordered matrix. 

By using the factors f(R~)'s in this way, we may form- 
ally divide the diffuse scattering equation into the two 
terms, equations (4) and (5), from the ordered and dis- 
ordered volumes. 

The aspect of a microdomain structure is schematic- 
ally illustrated in Fig. 3. Microdomains labelled as 1, 
4 and u are in phase with one another while the others 
are also in phase with one another, but, the former 
group, which is called the 1st type of order, is out of 
phase with the latter group which is called the 2rid type 
of order. An example of the distinction of the order 
types is given in Appendix I. 

The shape function E,(R~) is defined here as follows; 

1 inside the domain labelled as u 
E,,(R~) : 0 outside the domain u. 

(6) 

f ' (R,)  is written in terms of the shape function E,,(R,), 
i.e. 

f ' (R,)  = ~fu(R,)Eu(R,). (7) 
1/ 

f.(R~)'s are the factors defined in the whole regular 
atomic lattice as taking the values of thef(R~)'s for the 
perfectly ordered structure in phase with the domain u. 
The subscript u of f.(R~) and E.(R~) indicates both 
the label of the domain and the type of ordered struc- 
ture. The intensity equation (5) for the diffuse scat- 
tering is rewritten as 

IMD(q)--~ ~ ~ ~,f.(R,)U*,(Rj)E.(R,)E.,(Rj) 
i j u u' 

× exp [ -  2rciq. ( R , -  Rj)]. (8) 

We will use an average shape function Et(r) having 
a centre at r = 0  where r represents a vector in real 
space, instead of the shape function E,,(R~) corre- 
sponding to the individual domains, if the domains 
belong to the same tth type of ordered structure, i.e. 
they are in phase with one another. X. is defined here 
as a centre of the function Er(r.) corresponding to a 
domain u, where ru= R ~ - X .  indicates a vector of an 
atomic site with respect to Xu. The average function 
E~(r) is discussed in detail in Appendix II. Equation (8) 
can be rewritten by using the average ftmction Et(r) 
and the relation R: = R~ + Rz and X., = X. + X.u, as 
follows: 

IMo(q)=mamBlfA--.fBI z ~ ~ ~ C~'"' exp (2~riq. R,) 
l U U" 

x ~ E , (R , -  X.)E, , (R,-  X. + R , -  X..,), (9) 
i 

where 

1 
C~ ' ' ' )=  ~, ~- ft(R,)f;*,(R, + R,) ,  (10) 

m A r n B [ A - -  JBI- 

and the subscripts t and t '  indicate the types of order 
of microdomains u and u', respectively, and fe(Ri) in 
equation (10) the f(R~) value for the perfectly ordered 
structure of the tth type. In equation (9), the product 
f,f~,, from equation (8) is closely approximated by an 
average, which is carried out over pairs of atomic sites 
separated by the vector Rz, as expressed in equation 
(10). The factor C~ tt') is like the st parameter for a per- 
fectly ordered structure, but since the atoms of the pair 
refer to the different types of order t and t '  respectively, 
the factor can be regarded as a kind of phase factor 
between the t and t ' th types of order. 

Let P,,(X)dX be the probability of finding the centre 
of another ordered microdomain with the t ' th  type of 
order in the volume dX at the extremity of the vector X, 
whose origin is at the centre of a microdomain of the 
tth type of order. The value of P~t,(X) fluctuates about 
the mean density of microdomains of the t ' th order 
type when IXl is small, and tends toward the mean 
density when IXl assumes a large value. Prt,(X) corre- 
sponds to the distribution P(x) of the atoms at the 
extremity of the vector x whose origin is at an atom 
and was described in detail by Guinier (1963). Thus, 
equation (9) can be written as 

IMD(q)  = I h D ( q )  -[- I h o ( q ) ,  (1 l a )  

iOo(q) = roAm. i A _ f . i  2 ~ Z N~C~") 
DO l t 

× IEz(r) Et(r + R,)dr exp (2zciq. R,) ,  (1 lb) 
d 

I~D(q)-- mAmB ]fA_fB[Z ~ ~ ~ N~C~t,,,I Iptt,(X) 
VO l t ~' 

× Et(r)Ee(r + R~- X)drdX exp (2rciq. Rz), (11 c) 

where the sums over t and t '  are taken for all the 
possible types of order, and Art is the number of micro- 
domains of the tth type of order. The sum over i is 

replaced by an integral form (1/Vo)f"" dr, where Vo 
is the volume of the crystal per atom, taking into 
consideration that the centres of the microdomains 
X, are not necessarily situated on the periodic lattice 
points and the vectors ( R i -  Xu) exist continuously over 
the whole of real space. /0MD(q ) iS the intensity which 
would be obtained if there were no correlations be- 
tween microdomains, and it gives the diffuse scattering 
around the superlattice reflexion points which are 
broadened by the size effect of ordered microdomains. 
C~ ") corresponds to the ~z parameter in a perfectly 
ordered alloy of the tth type. ljaD(q) expresses an inter- 
ference term due to the correlations between micro- 
domains. 

Equations (1 la, b and c) are written in a more useful 
form by introducing the Fourier transforms of Ci *t') 
and Et(r), i.e. 
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(BZ)  

Cite)= ~ ?g") exp (-2zciG. Rt), (12) 
G 

Et(r) = Iet(q') exp (2zciq'. r)dq'. (13) 

In equation (12) the sum is over all the reciprocal- 
lattice points (both the fundamental-lattice and super- 
lattice points for the ordered structures) in the first 
Brillouin zone for the disordered lattice. Inserting 
equations (12) and (13) into equations (1 lb and c), we 
obtain 

_ m A m B  
- -  t ~ G l  ° t k~l  , I°D(q) v02 I/A--fB[ 2 ~ ~, N"'"°°2r"--Gi) 

(14a) 

mAmB 
t i ' G t  Iho(q)- v~ I A - A I '  ~ ~'t Zt, N~'(tt') 

× et(q-- G,)et,(q- G,) I Ptt,(X) 

x exp [2zci(q- G~). X]dX, (14b) 

where the sum for G~ is taken over all the reciprocal- 
lattice points for the ordered lattice. The following 
relations are utilized: 

I Et(r)Et,(r+Rt-X)dr= Iet(q')et,(q') 

× exp [ -  2zciq'. (Rz- X)]dq', (15) 

where et , (-q ' )  is replaced by tt,(q'), because the func- 
tion Et,(r) has an inversion centre, and 

exp [2zci(q-q ' -G) .  Rz] 
l 

-+ (1/Vo) ~,, J ( q - q ' - G - H )  (16) 
H 

where fi is the Dirac delta function, and H is a funda- 
mental-lattice vector for the disordered structure. 
G + H  is replaced by G~ in equation (14). 

If the function et(q-G3 is concentrated around the 
reciprocal-lattice point G~ so that the overlapping of 
the e~(q-Gj)'s around the different superlattice points 
Gj may be small, the interference part of the scattering 
intensity I~ao(q) in the vicinity of the reciprocal-lattice 
point G~ may be written approximately as 

dimension of the domains is about 12 A (or 3 x 3 x 3 
unit cells) in the case of CuaAu. Therefore the assump- 
tion mentioned above may be considered to be reason- 
able in the cases of Cu3Au and CuAu alloys. 

Simple examples for intensity calculations 

If microdomains belonging to the same type of order 
grow in clusters, only the statistical distribution P,(X) 
has a finite value and the other Ptt,(X) for t#t '  
vanish. Therefore equation (17) becomes 

m A m B  
Iho(q,)- v02 IfA-AI 2 ~ N °'"0°' - -  'mi  °t (qt) 

t 

I Ptt(X) exp (2z~iq,. X)dX. (18) x 

This equation has a maximum at q~ = 0, because et(q~) 
has its maximum value at q~ = 0 and 7~J~ ) > 0, and there- 
fore, correlation between ordered microdomains in anti- 
phase relation must be introduced in order to explain 
the fine structure of the diffuse scattering shown in 
Fig. 1. 

Another example is given in the following: when 
microdomains of all the types of order are related to 
one another by antiphase relations only, such as in the 
Cu3Au-type structure, I~to(q~) takes a very simple 
form; i.e. 

m A m B  
l~to(q,)- v02 I fA --fBl2Nde2(q,) 

X ~ ~d;" I Pie(X) exp (2zciq,. X)dX, (19) 

where Nd(= ~Nt) is the number of microdomains in the 
t 

crystal. The form factors e,(q3 become the same 
el(q3 for all the types. When G~ is a superlattice vector, 
y~') takes a negative value for certain type of t '  in 
antiphase with the first type, as shown in Table 1. 
Therefore, if Plr(X) takes a large positive value for 
such pairs of microdomains with the interdomain vec- 
tor X=X0, l~tD(q3 may take a negative value just 
around qt=0, and a large positive value around q~ 
corresponding to q~. X0=½. This explains weakening 
of the diffuse scattering due to SRO at a superlattice 
position G~ and reinforcement at q = 2kF around G~. 

mAmB tTet et(qt) et,(ql) Zhl:,(q3= v° 2 I A - A I  z ~, ~,, N "")  

× I Ptt,(X) exp (2z~iq,. X)dX, (17) 

where q~=q-G~; qt lies quite close to the reciprocal- 
lattice vector G~. 'According to the results of a com- 
puter simulation by Gehlen & Cohen (1965) and the 
diffraction theory of Greenholz & Kidron (1970), the 

Table 1. ~,~;')for different values of t' in the Cu3Au- 
type structure 

~Ot') 
t' ~lt' Gloo Golo Gllo 
1 0 3 3 3 
2 (½)a[110] --3 --3 3 
3 (½)a[011] 3 --3 --3 
4 (½)a[101l - 3  3 - 3  

~lt, is the out-of-step vector with respect to the first-type ordered 
structure. See Appendix I. 
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The following equation results from equation (19): 

(X'~ I I~D(q,) 
~'G, --~,', ,= j (mam~]v~)Nnlf,_f.lZe~(q,) t '  around Gl 

× exp ( -  2Tciq~. X)dqi. (20) 

The integration of the right-hand side of equation (20) 
is made only in the vicinity of the superlattice position 
G~. This equation gives several linear equations asso- 
ciated with the superlattice points in the first Brillouin 
zone for a disordered lattice, that is, three equations 
for an ordered lattice as shown in Appendix I. When 
the number of Pw's  for a certain interdomain distance 
X is equal to the number of linear equations, the Pw's  
can be solved uniquely with equation (20). Even if the 
former number exceeds the latter, some valuable rela- 
tions among the Pw(X)'s can be obtained by some 
physical considerations. This subject will be treated in 
a subsequent paper on specified alloys. We try here a 
simple calculation for the case of an A3B-type struc- 
ture. If there are finite probabilities PI,.(X) for the 
definite interdomain vectors X as follows: 

e l 2 C  ~ )  

for X =  

P , : ( X )  = 

for X =  

P13(X) = 

for X =  

P14(X) = P 
a(0, Xo, X0), a(0, )70, X0), a(0, Xo,.go) and 
a(0, )?o, )?0), 

P13(X) = P 
a(Xo, O, Xo), a(~o,O, Xo), a(Xo, O,.go) and 
a(J(0, 0, 37o), (21) 

P14(X) = P 
a(Xo, Xo, O), a(.go, Xo, O), a(Xo,2~o, O) and 
a(a'0, ~?0, 0), 

where X = a(0, X0, X0) stands for X = 0a + Xob + Xoc, 
lal : Ibl : Icl = a  being the lattice constant of the cubic 
crystal lattice. I~o(q~) takes the following values: 

l~o(ql00) oce2(qio0) ( - e  cos 2rchzXo cos 2rch3X0) 
around Glo0, 

I~o(qot0) OCel2(qolo) ( -  e cos 2zch3Xo cos 2zchlXo) 
around G0i0, (22) 

l~o(quo)OCeZi(quo) ( -  e cos 2nhlXo cos 2rchzXo) 
around Gno, 

where the subscripts 1-4 of P(X) represent the types of 
order in Fig. 5, and 100, 010 and 110 the superlattice 
reflexion positions in the case of the Llz structure, h~, 
hz and h3 are continuous variables in reciprocal space, 
i.e. qi =hia* +h2b* +h3c*, la*[ = [b*l = [c*l being equal 
to (I/a). Thus, it can be seen that the microdomain 
distribution given in equation (21) causes an intensity 
modification as expressed in equation (22), which is 
approximately similar to that around the superlattice 
reflexion positions in Fig. 1. In the practical case of the 
CuaAu alloy, as shown in Fig. 1, the Pw(X)'s must be 
given as continous functions of the vector X. 

D i s c u s s i o n  

The diffraction effects due to crystal distortions (or 
uniform strains) and atomic displacements (or local 
strains) are neglected in the present treatment, but it is 
rather easy to introduce these effects qualitatively. For 
example, it may be considered, in the case of the CuAu 
alloy, that there exist microdomains of the L10 struc- 
ture deformed tetragonally in a disordered state. Such 
a crystal distortion gives rise to a peak shift of the 
diffuse scattering corresponding to the tetragonality 
with respect to the reciprocal fundamental lattice. 

Such peak shifts of diffuse intensities have been 
observed experimentally for the CuAu alloy (Sato, 
Watanabe & Ogawa, 1962; Hashimoto & Ogawa, 
1970). 

The disordered region as defined in the C M D M  is, 
in practice, not necessarily perfectly disordered, but the 
nearest-neighbour atomic pairs of different kinds may 
be enhanced even in that region because of the presence 
of the repulsive interaction between ion cores. This 
effect has not strictly been considered in the present 
treatment, but the usefulness of the CMDM cannot be 
underestimated for this reason. 

Various models that have so far been proposed are 
constructed with only the first few ~z parameters, and 
therefore they cannot explain the fine structure of the 
diffuse scattering due to SRO. The introduction of 
correlations between ordered microdomains in the 
present CMDM corresponds to consideration of the 
long-range part of the ~z parameters. The CMDM is 
capable of explaining the fine structure observed in the 
cases of CuaAu, CuAu (Sato, Watanabe & Ogawa, 
1962; Hashimoto & Ogawa, 1970) and Cu3Pd (Wata- 
nabe, 1959; Oshima & Watanabe, 1973). 

The reasonableness of the CMDM is understandable 
on the basis of the possibility of the cxistcnce of micro- 
domains in disordered alloys with SRO, as revealed by 
the computer-simulation work of Gehlen & Cohen 
(1965) and the thermodynamical considerations of 
Moss (1969). According to Gehlen & Cohen, the micro- 
structure computed from cq, ~2 and cq in the disordered 

( i )  ( 2 )  

i ! 

x • Au 

O Cu 
Fig. 5. Four types of ordered lattice Cu3Au. Open and solid 

circles represent copper and gold atoms respectively. 
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Cu3Au alloy is described as a random matrix in which 
ordered regions are embedded. This result shows that, 
if a set of the at parameters has proper values in the 
short-range part, there exist microdomains in the SRO 
alloys. Such interatomic correlations are considered to 
be caused by very short-range interatomic interactions. 
However, it has been made clear that the considerably 
longer-range interaction, due to the Fermi surface 
effects on the electron energy, plays an important role 
in the fine structure of the diffuse scattering in a dif- 
fraction pattern. Therefore it seems to be reasonable 
to consider that a microdomain structure is perturbed 
by the long-range interaction, i.e. microdomains cor- 
relate with one another in a disordered matrix, and this 
effect is responsible for the formation of the antiphase 
relation. 

A diffraction study on the isothermal variation of the 
electron diffraction pattern from Cu3Au by Yama- 
guchi, Watanabe & Ogawa (1962) has shown that in 
the initial stage of the ordering process, superlattice 
reflexions appear with a shape similar to the diffuse 
scattering in the disordered state and the former re- 
flexions become sharper and stronger with increasing 
annealing time. This phenomenon can be easily under- 
stood from the CMDM as follows: an order-disorder 
transformation, as in Cu3Au, proceeds through atomic 
diffusion. Therefore the ordering in the initial stage 
advances around the microdomains embedded in a 
disordered matrix, domain boundaries form, and the 
domains grow larger and larger. For the reverse case, 
the disordering process of a perfectly ordered single 
crystal is considered. The degree of order progressively 
decreases with rising temperature. When the temper- 
ature exceeds To, the ordering is mostly destroyed, and 
finally microdomains in antiphase relation grow and 
are arranged by atomic diffusion so as to stabilize the 
conduction-electron energy. 

Finally, it should be understood, according to the 
CMDM, that the microdomain structure above Tc is 
not a remnant of the antiphase domain structure in the 
partially ordered state, but the latter is just a develop- 
ment of the former. 

The author is indebted to Professor S. Ogawa for his 
encouragement and discussion throughout the present 
work. He is grateful to Dr H. Iwasaki for his valuable 
comments. Thanks are also due to Mr T. Ichikawa for 
helpful discussions. 

APPENDIX I 
The term 'the type of order' is explained in the case of 
a CuaAu-type alloy. There are four types of ordered 
structure depending on which of the four sublattice 
positions are occupied by gold atoms. This is shown in 
Fig. 5. If an ordered microdomain is in phase with the 
structure indicated by (1), (2), (3) or (4) in Fig. 5, we 
call the type of order of the domain the 1st, 2nd, 3rd 
or 4th type of order respectively. 

APPENDIX II 

We consider here how the various kinds of shape and 
size of microdomains are averaged and how the form 
factor et(q) is obtained from the experimental data. 

The SRO intensity due to the microdomain structure 
model, except the interference effect between the do- 
mains corresponding to ILM+IOD, is expressed using 
the Warren SRO parameters as follows: 

Isro(q)=nmAmB[fA--fB[ 2 ~_, a~ exp (2niq. Rl) (A1) 
! 

where n is the number of atoms in the alloy crystal and 
the at parameters are denoted as a~ for the model 
without correlations between microdomains. Com- 
paring equation (A 1) with l~ro(q) = / L M  + l°D(q) which 
can be expressed by equations (4) and (1 lb), we obtain 

r/r Nt C~,, l E,(r)E,(r + Rt)dr, (A2) al  n 6t'°+ v 
where V equals nvo, the volume of the alloy crystal. 

The a~ parameters may be very close to the true at 
parameters within the range of small [Rt[, because 
they are not very much affected by pairs of sites be- 
longing to the separated domains within this range. 
Therefore, we approximate 

at within the range of small ]Rt[ 
a~=. (sometimes with a little correction) (A3) 

0 otherwise. 

The shape of the microdomains is considered to be 
closely related to the symmetry of the type of order, 
e.g. the cubic symmetry for the Cu3Au type, the tetra- 
gonal symmetry for the CuAu type, etc. Therefore, the 
mean shape function should be different according to 
the symmetry of the ordered structure for each type of 
order and orientation of the domains. We consider 
here the case of the AaB-cubic-type structure for sim- 
plicity. In this case, equation (A2) is simplified as 
follows: 

nr N. C~n) I Rt)dr (A4) a~= -n-fit.0+ ....... v E1(r)El(r+ , 

where the mean shape function is represented by 
E~(r), since the domains of all the types of order are 
physically equivalent. Na is the total number of micro- 
domains in the crystal. By using the property of the 
Fourier integral in consideration of equation (13), the 
following equations are obtained: 

I E~(r)dr= I e~(q)dq=(navo/Na) for l=O, (A5a) 

e~(q) exp ( -  2rciq. R3dq ..... -C~) -~ j  for l ,  0. 

(ASb) 

na is n - n , ,  and is the number of atoms in the ordered 
microdomains. (navo/Na) therefore indicates the 

A C 30A - 8 
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average volume of a microdomain. The inverse of 
equation (A5) becomes 

e~(~=Vo ~ ~-~i iS-exp(2rciq .  R~). (A6) 

Up to equation (A5), e~(~ is defined as a function con- 
centrated only around q=0 .  In equation (A6), e~(q) is 
given as a periodic function in the fundamental lattice, 
as the e~ parameters are defined only at the direct lattice 
points. If e~(~ is sufficiently concentrated in the vici- 
nity of a reciprocal-lattice point, the distribution just 
around q = 0 may be regarded as e~(~ given in equation 
(A5). Thus, the mean shape function is obtained from 
the experimental intensity data using equations (A3) 
and (A6). At this stage, there is still uncertainty in the 
value of Nd in (A6). The following consideration will 
help determine it. 

The function El(r) may be regarded as a sort of 
order parameter according to the definition in equa- 
tion (6). If each site within a microdomain is occupied 
by the correct atom for the ordered structure, El(r) 
becomes unity, as was given in equation (6), and if the 
degree of order decreases with increasing distance from 
the centre of the microdomain, it changes from 1 to 0 
with increasing distance Irl. According to this consider- 
ation, the following equation holds: 

E~(r=0)= I el(q)dq= 1. (A7) 

Here, lel(q)l can be obtained directly from the experi- 
mental data using equation (A6), but el(q) cannot. In 
the non-correlation model considered here, however, 
e~Z(q) may be approximated by a smooth function such 

as a Cauchy, Gaussian, exponential function, etc., and 
then el(q) may be a smooth positive function. In most 
practical cases, el(q) in equation (A7) may be safely 
replaced by Icl(q)l. Using I~l(q)l obtained from equa- 
tions (A6) and (A7), Nd is evaluated. 

It is inferred from equation (A5a) that E~(r)re- 
presents the distribution of size and shape of micro- 
domains. 
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Some Neutron Diffraction Experiments on Curved Silicon Crystals 
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The diffraction properties of curved silicon crystals, with curvature radii between ~ and 25 m obtained 
by microscopic techniques, were investigated by means of a neutron diffractometer. The ratio of neutron 
reflectivity between plane and curved silicon crystals was measured as a function of the neutron wave- 
length using different reflecting planes in both Bragg and Laue cases in symmetrical and asymmetrical 
conditions. The experimental results were interpreted with the results of theoretical investigations on the 
dynamical theory of diffraction applied to the curved-crystal case. The implications of this work on 
neutron monochromator design are briefly discussed. 

1. Introduction 

The problem of neutron diffraction by curved crystals 
has been treated theoretically (Klar & Rustichelli, 
1973) by an extension of the dynamical theory for X-ray 

diffraction (Taupin, 1964a, b). The aim of this work 
was to give an experimental contribution in the same 
field of the physics of neutron diffraction by curved 
crystals. The ratio of neutron reflectivities between 
perfect plane crystals and curved crystals with the same 


